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Abstract 

The critical-voltage method in electron diffraction is 
extended to nonsystematic cases. Precise determina- 
tion of relations between structure factors can then 
be carried out in the usual voltage range for trans- 
mission electron microscopes. General analytical 
expressions for three- and four-beam cases are 
derived. High precision (0.1%) in the determination 
of structure factors (Fourier potential) is obtained in 
special symmetric cases. Theoretical analysis and 
experimental patterns are shown for three such 
examples: a four-beam case in diamond and sphaler- 
ite structures (silicon, ZnS), a five-beam case in a 
face-centred-cubic metal (copper) and a six-beam 
case in rock salt MgO. Several other cases are 
described and the effect of absorption is shown to be 
small. 

1. Introduction 

The critical-voltage effect in high-energy electron 
diffraction (Watanabe, Uyeda & Fukuhara, 1969) 
offers a sensitive method for structure-factor deter- 
mination. Low-order structure factors can, in special 
cases, be determined with a precision better than 
0.1% from the extinction of Kikuchi- or Kossel-line 
contrast at a particular voltage (Sellar, Imeson & 
Humphreys, 1980; Tabbernor, Fox & Fisher, 1990). 
Until recently, such measurements have been based 
almost exclusively on the systematic case, viz the 
extinction of a second-order, line 2g owing to the 
interaction with the first-order reflection g. Apart 
from the need for high accelerating voltage, this 
systematic critical voltage was limited to the deter- 
mination of one or two structure factors from very 
simple structures. Therefore, Gjonnes & Hoier (1971) 
proposed to extend the method to nonsystematic 
cases. The application of critical voltages occurring 
at zone-axis positions was discussed by Shannon & 
Steeds (1977) (see also Matsuhata & Steeds, 1987), 
but so far no extensive discussion of the nonsystem- 
atic critical-voltage effect has been presented. 
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A basis for this discussion may be the treatment of 
dynamical scattering in the three-beam case, as pre- 
sented by Gjonnes & Hoier (1971) and Hurley & 
Moodie (1980); see also Kambe (1957). Any nonsys- 
tematic three-beam case 0, g, h in a centrosymmetric 
crystal will include Bloch-wave degeneracy at a par- 
ticular set of excitation errors, visible as vanishing 
contrast at a certain position on the Kikuchi or 
Kossel line. Measurement of this condition, which 
can be carried out at normal voltages, might in 
principal yield two experimentally determined rela- 
tions between structure factors. But in practice this 
condition will, in most cases, be difficult to measure 
with sufficient accuracy: special configurations must 
be sought in order to attain accuracies comparable 
with the systematic critical-voltage method. 

The purpose of the present study has been to 
investigate such conditions theoretically and experi- 
mentally. The analytical treatment is extended to 
four beams and the role of symmetry in describing 
the effect is emphasized. The influence of absorption 
is discussed. Three typical situations are analysed in 
some detail: a diamond-shaped four-beam case, with 
422, 220, 202 in face-centred-cubic (f.c.c.) structures 
(silicon, ZnS); extinction of a segment at the 420, 240 
intersection consituting a five-beam case in a f.c.c. 
metal (copper); contrast anomaly in a six-beam case 
in an NaCl-type structure (MgO) involving the weak 
111 reflection. The early measurements of critical 
effects were based on Kikuchi-line contrast. The 
sensitivity is increased when the corresponding 
Kossel-line features appearing in convergent-beam 
electron diffraction (CBED) discs are used instead 
(Sellar, Imeson & Humphreys, 1980). The continu- 
ously variable voltage available in modern electron 
microscopes operating in the range up to some 
hundred kV facilitates the measurement. 

The contrast features observed correspond to 
Bloch-wave degeneracies and the Bloch-wave repre- 
sentation is a convenient basis for our discussion. 
The cases presented in this paper can be referred to 
a zero-order zone, with the usual simplifications 
associated with the transmission case, see e.g. Reimer 
(1989). Corrections pertinent to an inclined entrance 
surface can be applied, see e.g. Niehrs & Wagner 
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(1955), but are usually negligible. The disperson 
surface is represented by the A n p a s s u n g  measured 
along the z direction as a function of the components 
kx and ky of the incident wave vector k. Inversion 
symmetry in the zone is assumed and the symmetry 
of Bloch waves can then be described by the notation 
used by Cochran (1952)• For a discussion of Bloch- 
wave symmetry, see Gjonnes & Tafte (1978) and 
Kogiso & Takahashi (1977). 

2. Bloch-wave degeneracy in three- and four-beam 
cases 

Let us first recall briefly the condition for degeneracy 
in the centrosymmetric three-beam case as studied by 
Gjennes & Heier (1971), Gevers, Serneels & David 
(1974) and Hurley & Moodie (1980)• The eigenvalue 
equation obtained from the three-beam dispersion 
matrix, 

- 2 k y  Ul2 UI3 ] 
Ull 2k(sz  - -  3,) U23 ], 
U31 U23 2 k ( s 3 -  3,) 

with Fourier potentials Gj (which here include the 
mass ratio m/mo = 3,), double wave number 2k, 
eigenvalue (Anpassung)  3' and excitation errors Sg, 
can be represented by a hyperbola in the s2, s3 plane: 

(2ks2 - 2k3, + U22/2k3,)(2ks3 + 2k3, + U23/2k3,) 

= (U23 --I- UI2UI3/2k3,) 2 (1) 

in the centrosymmetric case U~ = Uj,.. When the 
right-hand side is equal to zero, the hyperbola 
degenerates into two straight lines, which intersect at 
the point 

2ks2 = U 1 2 ( U 2 3 / U 1 3 -  U 1 3 / U 2 3  ) 

2ks3 = U 1 3 ( U 2 3 / U 1 2 -  U 1 2 / U 2 3 ) ,  (la) 

i.e. the diffraction condition at which the accidental 
degeneracy occurs• It is noted that this degeneracy 
may occur only in the centrosymmetric case or, 
rather, when the phase invariant a2 - a3 - a23 = n~', 
see e.g. Marthinson, Matsuhata, Heier & Gjennes 
(1988)• Experimentally, this condition is observed as 
vanishing contrast at the position given by (la) on the 
Kikuchi or Kossel line. In principle, two equations 
are obtained; in practice, at best one of the excitation 
errors can be measured with sufficient accuracy• 

The above treatment can be extended to four 
beams• In the eigenvalue equation A C  = 2 k y C ,  let us 
write the four-beam matrix 

0 Ul2 UI3 UI4 ] 

] U21 2ksz  U23 U24 

U31 U32 2ks3 U34 

O41 U42 U43 2ks4 

A = 

In the general case (U U = U*), the dispersion equa- 
tion for the eigenvalues 3, can be written 

1,4 - 3,11 = X Y Z  + p X  + q Y + t Z  + C = 0 (2) 

with 

X = 2ks2 + y + (U21Ulz /y )  

Y = 2ks3 - y + (U31U!3/3,) 

Z = 2ks4 - 3, + (Ual U14/3,) 

p = --  U 3 1 U 1 4 [ ( 1 / 3 , )  q- ( U 4 3 / U I 3 U 4 1 ) ] c . c .  

q = - U 4 1 U 1 2 [ ( 1 / 3 ,  ) -Jr ( U 2 4 / U I 4 U 2 1 ) ] c • c  . 

t = - U2, U13[(1/3,) + (U23/U2, U13)]c.c. 

C = UI2U21U13U31UI4U41[(1/3, ) q- (U43/UI3U41)] 

x [(1/3,) + (U24/UI4U21)] 

x [ (1/3 , )  + (u23/u2,u,3)] + c . c .  

c.c. represents the complex conjugate. The param- 
eters X, Y, Z, p, q, t and C are all real numbers when 
A is Hermitian. Equation (2) represents a set of 
hyperbolic surfaces in the three-dimensional X Y Z  
space• In analogy with the three-beam case, let us 
look for degenerate points in the centrosymmetric 
case - and in other cases when C 2 + 4pqt  = 0 owing 
to some symmetry element• 

Assuming for the moment Z ~ 0 in (2), we may 
write 

[X + (q /Z ) ] [Y  + (p/Z)] = - {t '/2 + [ ( -pq ) ' / 2 /Z] }2 .  

When the right-hand side is zero, the hyperbolae at 
constant Z degenerate into two straight lines inter- 
secting at the point where 

X =  - C/2p,  Y =  - C/2q,  Z = - C/2t .  (3) 

Equations (3) can be regarded as a parametic repre- 
sentation of a curve in X Y Z  space by the eigenvalue 

J [ 2k7 2mm 

2ks,, o 

- ~ . . ~ m  m 
2mm 2'mm o 

(a) (b) 
Fig. 1. (a) Sketch of beams and Kikuchi lines in a four-beam 2ram 

case. The coordinates 3 and e for the wave point are measured 
from the 2ram point. (b) Four-beam dispersion surface branches 
at the symmetric wave point 2ram, as functions of the mass ratio 
/3. Critical voltage occurs when the branches 2mm and 2'turn' 
intersect. 
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y. At any voltage, there is a relation between the 
magnitudes X, Y and Z, viz the Ewald sphere; the 
degeneracy occurs where the curve cuts this sphere. 
The assumption Z # 0  is seen to be unnecessary 
because (3) is also obtained by division by X or Y. 
Note also that p, q or t = 0  can be avoided by 
redefining the zero beam. 

As in the three-beam case, the degeneracies occur 
only in the centrosymmetric case and other cases 
where the invariant phase angles are 0 or zr because 
of some symmetry element. Symmetry considerations 
are, in general, helpful in deriving the condition for 
degeneracies; the most useful cases seem to appear 
between Bloch waves of opposite symmetry referred 
to a symmetry element. 

3. Example I: diamond-shaped configuration of spots 

As the first example, consider the situation sketched 
in Fig. l(a): four beams in a configuration with point 
symmetry 2ram. This is essentially the case studied by 
Gjonnes & Hoier (1971) who showed how the 220 
structure factor in silicon could be determined from 
the position of vanishing contrast  at the 422 Kikuchi 
line, i.e. at one of the mirror lines; see also Spellward 
(1988). The effect appears with much clearer contrast 
in the CBED pattern as shown in Fig. 2. This case 
was discussed also by Marthinsen, Matsuhata,  Hoier 
& Gjonnes (1988); here, we present a treatment of  
this four-beam case based on the expressions derived 
above, with a more general proof. 

With the Fourier potentials UI3 = UI4 = U23 = U24 

= f  U34 = Ug and Ut2 = U/, and with the excitation 

errors 

2ks3 = (h 2 - g2)/4 - g8 + he 

2ks4 = (h 2 - g2)/4 + he 

2ks2 = ge 

(8 and e are orthogonal coordinates, measured from 
the symmetry point 2mm, c f  Fig. l a) inserted in the 
expressions for X, Y, Z, C, p, q and t, equations (3) 
take the forms 

2he + (U~I~,)- ~, 

= UT[(l/~,) + (llUh)]2[(ll~,) + (UglU~)] -1 

[(h 2 - g2)/4] - g8 + he + (U~Iy) + y 

= UfZ[(1/V) + (Ug/U,2)] (4) 

[(h 2 - g2)/4] + g8 + he + (U~/y) - ,/ 

= + 

From the last two equations, we obtain 8 = O, 2ks3 = 
2ks4 and y = [(h 2 - g2)/4] + he, which, inserted in the 
first equation, yield two values for e: 

he = ( { -  [(h 2 - g2)/4 + ( -  2Ug + UZg + UgUf)/Ug} 

x { - [ ( h  a - g2)/41 + U g -  Uf}) 1/2. (5) 

For  the case where g > h, these are the location of 
two critical points at the mirror line 6 = 0, visible as 
vanishing contrast of the reflection g, with the central 
beam at beam 3. The corresponding degeneracies 
occur between a symmetric (m) and an antisymmetric 
(m') Bloch wave. With increasing voltage, L el will 
decrease until the two degeneracies merge at a 

Fig. 2. Large-angle convergent-beam electron diffraction (LACBED) patterns from silicon taken at 203 kV, in 000 and 422 reflection, 
showing vanishing contrast at two positions on the 422 line. 
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Fig. 3. Calculated dispersion surfaces (from top to bot tom) below, 
near and above the critical voltage along the two symmetry lines 
in Fig. l(a). Branches are labelled according to both solid-state 
and crystallographic notations. The calculations are for ZnS 
with 42 beams. 

(a) (b) 
[ • • 

. 1 - -14 ram 

I I 

(c) 
Fig. 4. (a) Five-beam case in copper, in [001] zone. (b) Schematic 

five-beam dispersion suface section along ky, at the critical 
voltage when the accidental degeneracy appears between two m 
branches. (c) 64-beam calculation at 100 kV of  the dispersion 
surface in copper. Bloch waves 4, 5 and 6 are shown at 100 kV; 
the accidental degeneracy between 4 and 5 is indicated by an 
arrow. 

Fig. 5. Left to right: CBED patterns taken from copper at 82, 122 and 203 kV, respectively. The upper correspond to parts of the lower 
picture with a different exposure time. 
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Table 1. Some calculated nonsystematical critical volt- 
ages (kV) in the 2mm configuration of  Fig. l(a) for  Ca 
100 beams with Doyle-Turner scattering factors and 

available Debye- Waller factors 

ZnS 165 obs: 152 (5) 
GaAs 129 

Germanium 149 
Silicon 293 
Copper 532 

Aluminium 1345 

critical voltage, given by 

E~ = (moc2/e){[ Ug(g 2 - h2)/4(2U~- UgUh- U2)]-  1} 

in terms of Fourier potentials referred to zero rest 
mass. Equation (5) for the position of the degenera- 
cies can also be derived by putting the central beam 
at beam 3 at the outset, noting that 7 = U34 is then a 
solution, which makes C, p and t = 0. Inserting this 
back into the determinantal equation (2), we obtain 
X Z  = - q  as a condition for the degeneracy, with the 
same result as before. 

A further alternative is referred to in Matsuhata & 
Gjonnes (1988): along the mirror line, the four-beam 
matrix will have three symmetric and one anti- 
symmetric Bloch-wave solutions. The latter (CI = C4 
= 0; C2 = - C3) is readily seen to have the eigenvalue 

' 7  = -Ug;  the degeneracy occurs where one of the 
symmetrical eigenvalues coincides with 7. A schema- 
tic dispersion surface is shown in Fig. l(b). 

In the f.c.c. 422 case studied, /3 Ug = / 3 U 4 2 2  = U34; 

/3Us=/3Uh =/3  U22o = U~2 = U]3.  With positive 
Fourier potentials, as in the example treated here, 
the degeneracies will appear at the short diagonal of 
the diamond formed by beams 1 and 2. In cubic- 
close-packed diamond and sphalerite structures, this 
degeneracy is quite easy to observe and measure on 
the 422 Kikuchi or Kossel line, either as the separa- 
tion 2e between the degenerate wave points or as the 
critical voltage at which they coalesce. Fig. 2 is an 
example from silicon. In Table 1, some calculated 
critical voltages for the 422 extinction are listed. Fig. 
3 shows an example of many-beam calculations for 
ZnS: branches 2, 3 and 4 as functions of the separa- 
tion from the symmetry point M in Fig. l(a), along 
two directions. 

A variation on this symmetrical four-beam case is 
the 'skew diamond'  configuration with symmetry 2. 
For this case, the four-beam analytical expression at 
the symmetric point 2 can be found by equating the 
eigenvalues for one symmetric and one antisym- 
metric Bloch wave (see Appendix). 

4. Example II: extinction in a five-beam case hkO in 
copper 

This case is sketched in Fig. 4(a); a schematic disper- 
sion surface for the five most important beams 000, 

200, 020, 420 and 240 is shown in Fig. 4(b) as a 
section along the mirror line m in Fig. 4(b), with two 
antisymmetric and three symmetric Bloch waves. 
Two degeneracies are seen near the Bragg condition 
for simultaneous excitation of 420 and 240, i.e. at the 
split Kikuchi lines separated through the strong 220 

2k7 2mm 

2 m ' m '  

(a) (b) 

i 

2'm m' m m' 12'rn'm m 

2'm'm ~ 
i 
i 
! 
i 
! 
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m ! 

i 
! 

! 
I 

m !| m 

m' ..... i 

m ! m 
i 

(c) 
Fig. 6. (a) A six-beam case 000, 220, 111, 111, 311, 131 in the 112 

projection in MgO. (b) Sketch of six branches at the wave point 
Y as functions of the mass ratio t ;  a critical voltage is found 
that corresponds to the intersection between the branches 2 and 
3 (2mm (2) and 2'mm'(J)). (c) 96-beam calculations of the 
branches 2 and 3 around the Y point at voltages 80, 200 and 
300 kV, schematic as functions of k~ and k,. [(a)]. An accidental 
degeneracy is seen at the C line. 
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coupling. One of these, between one symmetric and 
one antisymmetric branch, will appear at any volt- 
age; the other, between the symmetrical branches 2 
and 3, will appear only at a particular primary-beam 
voltage. This voltage can be deduced from the 
reduced matrix 

- 2ky 21/23 U2oo 21/23 U42o ] 

21/23U2o o 3U22o+ 2k(s!- , 'y) 3(U220 + U4oo) ] 
I 

for the symmetrical Bloch waves (see, e.g., Kogiso & 
Takahasi, 1977). From the standard formulae refer- 
red to above for the three-beam degeneracy equation 
(la), we obtain, for the excitation errors s~ and s2 for 
200 and 420, respectively, 

2kSl/ f l  = --U220 + U200{[(U220 + V400)/U420] 

-- [2U420/( U220 + U400)]} 

2ksd3 = - U220 + U420{[U220 + U400/U200] 
- [2U2oo/(U22o + U4oo)]}, 

which must be fulfilled simultaneously. At the mirror 
line m, there is an additional relation between the 
two excitation errors, from which we can obtain the 
voltage for this degeneracy appearing at the line m: 

Ec = (moc2/e)[(g2/{[(3U 2 -  U2 )(Uh + Uf)/UgUm] 

- [4UgU,,/(Uh + U f ) ] -  2Uh}) - 1], 

where Ug = U2oo, Uh = U22o, UT = U4ooand Um = U42o. 
In the patterns in Fig. 5, taken at 82, 102 and 

122 kV, respectively, two branches of the split 420, 
240 lines are seen at the low and high voltages but 
with very weak contrast at the intermediate voltage. 
The 64-beam calculated dispersion surface branches 
in Fig. 4(c) correspond to 100 kV. 

5. Example III: a six-beam case in MgO 

As a third example, consider the symmetric six-beam 
configuration of Fig. 6, near the 211 zone axis in 
MgO, where a critical voltage was found at the Y 
point. Results of eigenvalue calculations with 86 
beams along the mirror lines C(s022 = 0 and S~T = 

(a) (b) 
Fig. 7. LACBED patterns of MgO at the 211 zone axis. (a) Bright-field patterns taken at 163 kV. The position of the accidental 

degeneracy is indicated by the arrows. (b) Dark-field LACBED of 220 taken at 163, 230 (nominal) and 300 kV (nominal). 
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Fig. 8. Diffraction situations with nonsystematic critical voltages; 

with point symmetries: (a) 1 (general triangle); (b) m (symmetri- 
cal triangle); (c) 2mm - in centred projection, C2mm; (d) 2 
('skew diamond'); (e), (f), (g) m (cf. ~)  in 4mm, C2mm and 
6mm projections, respectively; (h) 2mm with superlattice reflec- 
tions; (i) 4mm; (j) 2mm (cf §5). 

sin) are shown in Fig. 6(b) for three different volt- 
ages. Degeneracies appear at the C line; on increas- 
ing voltage, they move towards the 2ram symmetry 
point Y, where they merge at a critical voltage. An 
analytical expression for the degenerate eigenvalue 
can be obtained by equating two solutions from the 
reduced matrices with 2 m m  and 2"m'm symmetry, i.e. 

2kT2mm = (1/2){2ksg + 2U2 + U5 + U4 

-[(2ksg + U5 + U4) 2 -{- 8(U, -~- %)2] 1/2} 

2 k T 2 , m ,  m = ( 1 / 2 ) { 2 k s g -  2U2 + U 5 -  U4 

+ [(2ksg + U5 - U4) 2 -~- 8(UI -- U3)211/2}, 

where U1 =/3 Ulln, U2 =/3 U02z, U3 =/3 U131, U4 = 
/3 (-/240, U5 =/3 U222 and/3 = m/mo. These eigenvalues 
depend to a first approximation on Uon and sg, but 
through the dynamical interactions the critical volt- 
age is sensitive also to U,~,. Using scattering factors 
for neutral atoms (Doyle & Turner, 1968), we 
obtained the critical voltage at the Y point 234 kV, 
while the experimental U ~  found by Lehmpfuhl 
(1972) gave 258 kV. Our experimental value for the 
nonsystematic critical voltage obtained from the 
LACBED patterns in Fig. 7 was found to be in the 
range 260-270 kV. 

6. Configurations for nonsystematic critical voltages 

In addition to the three cases discussed above, 
several other configurations will include useful acci- 
dental nonsystematical critical voltages. Some of 
these are sketched in Fig. 8, which we discuss only 
briefly. Black dots are reflections and the broken 

-0,707E-5 

rml - I  

-0.922E-5 

-0.707E-5 

nm-1 

-0.922E-5 

4.806E-6 

-6 
.351 -2.000 0.651 1.348 -1.994 0.646 1.351 -2.000 0.649 1.351 -2.000 0.649 

4.806E-6 

nm-1 

-6 

1.300 -1.998 0.699 1.399 -1.998 0.599 1--300 -1.998 0.699 1.399 -1.998 0.599 
Fig. 9. Dispersion surface (Re y) and absorption parameter (Im3,) for Bloch waves 3 and 4 obtained by a 42-beam non-Hermitian 

diagonalization for the situation in Fig. 2, i.e. 242 silicon near the critical voltage. 
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circles indicate the approximate position of the Laue 
circle. Fig. 8(a) shows the general three-beam case 
discussed by Gjonnes & Hoier (1971) [see (1)]. The 
symmetric three-beam configuration in Fig. 8(b) may 
be seen as a special case of that of Fig. 8(a), with the 
degeneracy appearing on the mirror line at any 
voltage (Tafto & Gjonnes, 1985), essentially an 
intersecting-Kikuchi-line situation. Fig. 8(c) is the 
diamond-shaped array of spots in a Cmm projection, 
discussed in §3 above. This can also be used in a ping 
projection; then, the degeneracy will appear outside 
the Laue circle. A skew variant of this is shown in 
Fig. 8(d), with critical voltage at the symmetry point 
2 (see Appendix) Figs. 8(e) and ( f )  are variations on 
the case of Fig. 8(c) above, near axes 4ram and 2mm, 
respectively, with Fig. 8(g) showing a further varia- 
tion expected in a centred projection. Fig. 8(h) is 
then case III above (§5); with Fig. 8(/) as an exten- 
sion of the third-order critical voltage of Hewat & 
Humphreys (1975), essentially the same as Fig. 8(h), 
or as an extension of the second-order systematical 
critical voltage. The sensitivity varies considerably 
among these. So far the diamond and skew diamond 
configurations of Figs. 8(c) and (d) appear to be the 
best. Higher sensitivity is expected when the intersec- 
ting branches meet at a shallow angle, so there is 
lower sensitivity with higher-order reflections. Some 
degeneracies, as in Fig. 8(b), may not be called 
critical voltages because the measurement will focus 
on position rather than acceleration voltage. In gen- 
eral, the measurements are best performed in symme- 
tric configurations, in which case the condition of 
centrosymmetry is less strict. 

Absorption effects are not included in the above 
treatment. Absorption may shift the degeneracy off 
the symmetry line or point and also change the 
critical voltage slightly. This conclusion emerged 
from calculations based on non-Hermitian diagonali- 
zation. An example is shown in Fig. 9 for the silicon 
422 case shown in Fig. 2. The two sections, along the 

K line and normal to it, show the degeneracy to 
prevail but to be slightly shifted off the line. A 
notable feature is the dispersion-surface shape, which 
is reminiscent of the reflection case. The effect on the 
critical voltage was found to be negligible. 

7. Concluding remarks 

The nonsystematic critical voltage can be found in a 
number of configurations and measured with an 
accuracy approaching the systematical case. Analyt- 
ical solutions referred to in this paper, together with 
symmetry reduction of the dispersion matrix of the 
type discussed by Fukuhara (1966) and Kogiso & 
Takahashi (1977), for example, may be sufficient to 
estimate the existence and range of useful Bloch- 
wave degeneracies in the nonsystematic cases. Accur- 
ate calculations may need many beams; absorption 
appears to have a negligible effect on the condition 
for the degeneracy but may have considerable influ- 
ence on the intensity distribution in the vicinity of 
the point of vanishing contrast. 
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Research Council for Scientific and Industrial 
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APPENDIX 

To a four-beam case with symmetry 2 ('skew dia- 
mond') (Fig. 10) correspond two symmetric (2) and 
two antisymmetric (2') Bloch waves: 

y,,3 = [(2ks + U 4 Jr- U,)/2] 

-+ {[(2ks + U4 - U])2/4] + (U2 + U3) 2}',2 

y2,4= [(2ks-  U4-  U,)/2] 

+ {[(2ks- U4-  U,)2/4] + ( U z -  U3) 2} 1/2 

T ul • 

Fig. 10 Configuration of reciprocal-lattice points for the case in 
the Appendix. 
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Abstract 

The structure factors for low-order reflections of 
rutile-type SnO2 have been studied by high-energy 
electron diffraction. A systematic critical-voltage 
effect on 220 in 110 systematic reflections, a nonsys- 
tematic critical-voltage effect on 150 at the [513] zone 
axis, a nonsystematic critical-voltage effect on the 
002 reflection at the [100] zone axis and a [113]-zone- 
axis critical-voltage effect were observed within the 
accelerating-voltage range of a 200kV electron 
microscope. Analysis of these critical-voltage effects 
gave experimental values for the structure factors 
between the theoretical values obtained for the 
Sn2+O2 l- and S n 4 + O  2-  states for low-order reflec- 
tions like 110 and 011, whereas a structure-factor 
value between the theoretical values for the neutral 
SnO2 and Sn2+O~ - states was found for the 121 
reflection. 

1. Introduction 

The rearrangement of outer electrons in atoms owing 
to the bonding in a crystal can be studied by diffrac- 
tion experiments, in particular at low values of the 
scattering variable. In this range, electron diffraction 
will be more sensitive than X-ray diffraction to 
changes in the atomic scattering factors fx, as seen 
from the Mott relation: 

fel(s) = (me2/2h2)[Z - fX(s)]/s2 ' 

* Present address: Division of Electrodevices, Electrotechnical 
Laboratory, 1-1-4 Umezono, Tsukuba, Jap~in. 
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where s = sin0/a and 0, A, Z, fel(s) and fX(s) are the 
scattering angle, electron wavelength, atomic 
number, electron scattering factors and X-ray scat- 
tering factors, respectively; see, for example, Hirsch, 
Howie, Nicholson, Pashley & Whelan (1965). This 
advantage is exploited in several electron diffraction 
methods. Measurement and analysis of the critical- 
voltage effect (Watanabe, Uyeda & Fukuhara, 1969) 
caused by the accidental degeneracy of the Bloch 
wave offer accurate and absolute measurements 
related to structure factors for low-order reflections, 
thus providing information on the distribution of 
outer electrons. Until recently, the critical-voltage 
effect in the systematic case has been the one mainly 
utilized. In this case, a high-voltage electron micro- 
scope is usually required for the measurement of one 
or two critical voltages. An extension of the method 
so that more data for low-order reflections can be 
obtained and electron microscopes in a more com- 
monly available voltage range can be used appears 
desirable. 

The critical-voltage effect occurs not only in the 
case of systematic reflections but also in two- 
dimensional configurations of reflections. Gjonnes & 
Hoier (1971) proposed to extend the method to the 
nonsystematic case by measuring precise diffraction 
conditions for the accidental Bloch-wave degeneracy 
in the Kikuchi pattern. In the preceding paper 
(Matshuata & Gjonnes, 1994), we presented a devel- 
opment of the nonsystematic critical-voltage method 
that is applicable in the voltage range of ordinary 
electron microscopes and that uses the modern 
convergent-beam technique. Another approach, by 
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